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Steady wave patterns on a non-uniform steady fluid flow 

By F. URSELL 
Department of Applied Mathematics and Theoretical Physics, Cambridge University 

(Received 22 April 1960) 

A steady slightly non-uniform flow with a free surface is subject to a concen- 
trated surface pressure which gives rise to a pattern of surface waves. (For gravity 
waves on deep water this is the well-known Kelvin ship-wave pattern.) The 
motion is assumed inviscid, and the waves are assumed small. A theory is 
developed for the wave pattern, based on the following assumptions: 

(1) The stream velocity component normal to a wave crest is equal to the phase 
velocity based on the local wavelength; 

(2) the separation between consecutive crests is equal to the local wave- 
length. 

These assumptions are expressed in mathematical form, and the existence of 
a set of characteristic curves (associated with the group velocity) is deduced from 
them. These characteristics are not identical with the crests. Let the additional 
assumption be made that 
(3) the characteristics all pass through the point disturbance; the charac- 

teristics are then completely defined and may be constructed by a step-by-step 
process starting at the point disturbance. The same construction gives the 
direction of the wave crests at all points. The wave crests can then be deduced. 

Assumptions of the same type as (1) and (2) have long been familiar in various 
applications of ray tracing. For uniform flows the present theory gives the same 
pattern as the method of stationary phase. 

1. Introduction 
A steady flow with a free surface (the basicJlow) is subject to a concentrated 

surface pressure which gives rise to a pattern of surface waves. The present paper 
is concerned with the problem of calculating this pattern. Methods of solution 
have long been known for the special case when the basic flow is uniform. The 
pattern can then be found approximately from fairly simple rules (see $ 2 below). 
Examples may be found in Lamb’s Hydrodynamics (Lamb 1932)’ where applica- 
tion is made to gravity waves (Kelvin’s ship wave pattern) in $256, and to 
capillary and combined capillary-gravity waves in $272. By a change of co- 
ordinate system the problem of the uniform basic flow of constant depth becomes 
the problem of a pressure point travelling with constant velocity over fluid a t  rest. 
Pressure points travelling along curved paths on constant depth have been 
investigated by Stoker (1957, chap. 8). 

Little seems to be known about the steady wave pattern when the basic flow is 
non-uniform. A problem of this type arose recently in the work of Sir Geoffrey 



334 F .  Ursell 

Taylor on thin films of water controlled by surface tension (Taylor 1959; 
equations and figures quoted from this paper will be preceded by the numeral 11). 
Taylor studied wave patterns on uniform and axially symmetric flows, and an 
approximate theory which he developed for the latter agreed quite well with his 
measurements (see his figures I1 16,17.)  It is the purpose of the present paper to 
give a more systematio theoretical discussion, based on different ideas, of such 
wave patterns on a slightly non-uniform stream. 

I n  5 2 of the present paper the basic flow will be assumed uniform. Rules will be 
stated for the construction of approximate wave patterns from a point distur- 
bance. For this problem the exact linearized solution may be found in the form 
of an oscillatory integral, valid in the whole field of flow. The rules follow on 
applying the principle of stationary phase to the exact solution, and are thus 
seen to give the wave pattern at a distance from the point disturbance. 

In  $ 3  a new ray theory for slightly non-uniform flows will be derived. The 
equations for the wave crests will be deduced, not rigorously from the equations 
of motion (as for uniform flows), but from assumptions which appear physically 
reasonable and which resemble assumptions used in the familiar ray tracing of 
periodic water waves approaching a non-uniform shelving beach (Arthur, Munk & 
Isaacs 1952) and in other geophysical applications. The equations are used to 
construct a system of subsidiary curves, the characteristic rays, by a step-by-step 
method beginning at the disturbance. The crests can then be found by another 
step-by-step process. The present problem appears, however, more difficult to 
grasp physically than the problem of the shelving beach. In  the latter there is an 
obvious invariant, the period of the wave, which gives an immediate physical 
meaning to the step-by-step calculation of the ray pattern on the beach. In  our 
problem, on the other hand, all wavelengths are present, and the visible wave- 
length (except near the disturbance) depends on a stationary-phase condition. 
However, our formulation makes no explicit reference to stationary phase or to 
the allied notion of group velocity. 

In  5 4 the method will be applied to ‘symmetric ’ waves on a thin capillary film 
which is either uniform or radially expanding, and equations for the crests will be 
derived. These approximate to Taylor’s equations in the flow regions investigated 
by him, and are therefore confirmed by his experiments. 

The distribution of amplitude in the wave pattern is not treated in the present 
paper. It will be assumed throughout that the motion is frictionless and irrota- 
tional, and that the wave amplitude is small. 

2. Waves on a uniform stream 
I n  this section it will be supposed that the basic flow is a uniform steady stream 

of velocity U, and that the small pressure giving rise to the waves is concentrated 
at a point. From this special case the waves due to a small pressure distributed 
over a finite area may be deduced by integration. Let rectangular Cartesian 
co-ordinates be taken as follows: The z-axis normal to the mean free surface, the 
x-axis parallel to the stream velocity, and the y-axis normal to the other two axes. 
The origin is taken so that x = y = 0 at the point disturbance. Polar co-ordinates 
are defined by x = r cos 8, y = r sin 8. 
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Our problem is to find the equations of the wave crests (and of all other curves 
of constant phase); more precisely, to find the equations of their projection on 
any plane z = const. I n  these equations the co-ordinate z therefore does not 
appear. (The variation of wave amplitude will not be treated in the present 
paper.) As has already been stated in the introduction, the solution is well known. 
The argument which is quite rigorous proceeds along the following lines: Let the 
pressure disturbance be of small magnitude so that the equations of motion can be 
linearized. Then the boundary-value problem for the disturbance can be solved 
explicitly everywhere. In  particular, it  is found that the surface deformation is 
of the form 

dk dy-.----- F(k,  y )  exp ( ik(z  sin y - y cos y) }  s s  c,(k) - Usiny 

(with P(k, y )  depending on the pressure disturbance). Here the resolution into 
plane waves is evident. Care is needed in interpreting this integral, since the 
denominator vanishes when cJk)  = Usiny; this shows that the solution of the 
steady boundary-value problem is not unique. It is necessary now to choose the 
physically appropriate unique solution. For this purpose Lamb (1916) uses the 
'Rayleigh viscosity' (see Lamb, 1932, 5 242) which has no clear physical meaning 
but is mathematically convenient. It is physically more satisfactory to proceed 
differently and to consider the corresponding unsteady problem : 

Suppose that the pressure disturbance appears at time t = 0, not at time 
t = -a. A unique unsteady wave motion results which can again be found 
explicitly in integral form and which tends after a long time to a limiting motion 
of the previous form but now with a well-defined meaning of the singular integral. 
This method usually leads to the same result as the Rayleigh viscosity. Examples 
of its use are given by Peters & Stoker (1957, pp. 174-81). The double integral, 
when the appropriate interpretation has been found, gives the wave pattern 
everywhere, subject merely to the conditions of linearization in an inviscid fluid. 
No additional approximation has been introduced. To obtain an approximate 
picture of the wave pattern without numerical computation, it is now assumed 
that z and y are large compared with some length scale of the problem. The double 
integral may then be approximated by the principle of stationary phase. It is 
shown by Lamb (1916) that the dominant contribution arises when 

cJk)  = Usiny, 

and is in the form of a single integral 

where k(y) is the solution of c p ( k )  = U sin y and where the range of integration 
depends on z and y. Clearly the points of stationary phase are the solutions of 

d 
- {kfy) (z sin y - y cos y))  = 0. 
dY 
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If this equation has only one solution y,(y/z) the crests are seen to be of the form 

asymptotically when the distance from the origin is large, and are all similar with 
respect to the origin. This result can be expressed in a more convenient form for 
application by the following rules, valid at a large distance from the origin : 

(1) The phase velocity cp(k) ,  relative to  the stream, of a regular two-dimen- 
sional wave train of wavelength 2nlk is found subject to the appropriate boundary 
conditions. Thus, cp(k )  = J ( g / k )  for gravity waves on deep water (Lamb 1932, 
$229, equation 6). 

' Point disturbance 

FIGURE 1. The angles y, S and 0. 

( 2 )  The angle y (k) is defined by 
cp(k) sin y = __ U '  

and the angle S(y, k )  = S(k) by 

(3) The radial function r ( k )  and the angular function B(k) are defined by 

A 
r ( k )  = k sin 6( k )  ' W )  = y ( k )  +W),  (2.3) 

where A is a constant. 
Then, as k varies, these are parametric equations of a curve of constant phase. 

Different curves of constant phase correspond to different values of A .  From one 
crest to the next, A changes by 2n. Evidently all curves of constant phase are 
similar with respect to the origin. It can be shown from the equations that 
r dB/dr = -tan &on a curve of constant phase, whence it follows that S is the angle 
between the radius and the tangent, and y is the angle between the tangent and 
the x-axis; see figure 1. 
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[The same equations as above are also obtained in the solution of the following 

To find the envelope of the family of straight lines 

k(y) (xsiny-ycosy) = A ,  

problem : 

where k(y) is defined by the equation 

cJk)  = Usiny.] 

The asymptotic treatment of the integral also gives an approximate expression 
for the amplitude; see Lamb (1932, Q 256), Havelock (1908, 8 14). When there 
are several points of stationary phase their contributions must be added. The 
derivation fails when the method of stationary phase fails in its simplest form, 
for example, near a line of cusps as in Kelvin’s ship-wave pattern (Lamb 1932, 
Q 256). The crests at a distance from the origin may then be found from the integral 
by more elaborate asymptotic methods. For Kelvin ship waves it has been shown 
in this way (Urselll960) that near the cusps a different law of similarity prevails. 
Here the kinematic method of the next section fails. For dispersive systems the 
method of stationary phase is the more fundamental one. 

3. Waves on a slightly non-uniform stream 
In  the last section the stream velocity of the basic flow was assumed uniform. 

In  the present section it will be assumed merely that the basic flow is irrotational, 
that it  does not vary rapidly with distance, and that one velocity component 
(normal to the plane z = 0, say) is negligible throughout the fluid. (The free 
surface is then nearly parallel to z = 0,) An example of such a flow is the thin 
current sheet considered by Sir Geoffrey Taylor (1959, p. 309). To fix ideas, let it 
be assumed temporarily that the z-component of velocity vanishes on the plane 
z = 0. Let the x-axis and the y-axis be taken normal to each other and to the 
z-axis but otherwise arbitrary at this stage. Let the velocity components of the 
basic flow parallel to these axes be denoted by U(x, y) and V ( x ,  y), respectively; 
these vary only slowly with x and y, and in addition it is assumed that their 
dependence on z is negligible. Let the equation of the free surface of the basic 
flow be z = h(x, y). 

Suppose, as in the last section, that the flow is slightly disturbed by a small 
concentrated pressure which gives rise to the wave pattern. It will be supposed 
that through every point (2, y) of the free surface there passes just one phase 
curve, for example, a crest or trough; this restriction can easily be removed. It 
will also be supposed that (except near the disturbance) the phase curves are not 
strongly curved. Then a local wavelength 2n/k(x, y) can be defined approximately 
as the distance between neighbouring wave crests. Let y(x ,  y) denote the angle 
between the x-axis and the tangent at (2, y) to the phase curve through (x, y), 
and let alas and a/an denote differentiation along and normal to a phase curve 
respectively, a a - cosy--sin?- 

a 
an aY ax’ 
_ -  

a a a 
as- ax a Y  
- cosy-+siny-. 

22 Fluid Meoh. 9 
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Consider first the phase velocity c,(k, h) relative to a uniform stream of constant 
depth h, of a regular two-dimensional wave train of wavelength 2nlk subject to 
the appropriate boundary conditions (compare Q 2 above). Then our construction 
of the phase curves is based on the following two equations 

CP{+, Y), h(x, Y)} = wx,  Y) sin Y(X,Y) - V(x, Y)  COSY(X, Y), (3.1) 

Equation (3.1) corresponds toequation (2.1) above. It states that inasteady wave 
pattern the stream velocity normal to the crest is balanced by the phase velocity, 
and also that the phase velocity relative to a slightly non-uniform stream and on 
variable depth is adequately approximated by the phase velocity obtained from 
constant-depth theory. Equation (3.2) is already familiar in the geometry of ray 
systems (see, e.g. Longuet-Higgins 1957, equation 10). It states that the distance 
between neighbouring phase curves is proportional to the wavelength. To prove 
this, consider any family of plane curves (here the phase curves), expressed in the 
form f(x, y) = a, where a is a variable parameter. Then it can be shown by 
elementary differential geometry that 

the proof is omitted. The perpendicular distance between the neighbouring 
curves f (x, y) = a and f (x, y) = a + da is easily shown to be da/ lgrad f I ,  and if this 
is taken to be proportional to the wavelength, equation (3.2) follows. 

As the first stage in the construction of the phase curves, let us find a differential 
equation for the slope angle y(x, y). To this end, let (3.1) be differentiated with 
respect to x and to y 

ay (3.3) 
ac,ak acp ah au av -- ak = zsiny--cosy+(Ucosy+ Vsiny)- 

acp ak ac, ah av av _- ak ay+zay = ysiny--cosy+(Ucosy+Vsiny)- 

ax ax? 

a Y  a Y  ' 
(3.4) 

and let (3.2) be written in Cartesian co-ordinates 

Thus 

ay cosy-- siny- = -- 
a Y  

a a 
-(kcosy)+-- (ksiny) = 0 ax a Y  

(3.5) 

i.e. the vector wave-number k = ( - k sin y, k cos y) is irrotational. The line integral 
lk. ds taken between two points of the flow field is therefore independent of the 
path of integration and may be interpreted as the phase difference between the 
two points. A very interesting alternative development of wave patterns, starting 
from the phase function, is given by Whitham (1960) in the following paper. 
His treatment also covers the extension to three dimensions and to certain 
unsteady wave patterns. 
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After this digression, if now aklax and aklay are eliminated from equations (3.3), 
(3.4) and (3.5), and if the function cJk, h) is defined by 

(3.6) 
a 

cg(k, h) = cP(k, h) + k - cp(k, h) 
ak 

(in agreement with the usual definition of group velocity), then it is found that 

aY aY { v(z, y) - CJk, h) sin y} ~- + { V ( z ,  y) + cP(k, h) COB y}- ax a Y  

- -cosy -siny--cosy -siny -siny--cosy (2 a v  ax ) * (; av  a Y  ) - 

Here U(x, y), V ( z ,  y), h(x, y) and their derivatives are known functions of z and y, 
while acp/ah and cg are known functions of k and h and therefore, by (3.1), of 
z, y and y. Thus equation (3.6) is a quasi-linear equation of the first order for y, 
of the form 

(3.8) 
aY aY 

a Y  
4 ( G Y , Y ) ~ + F z ( z , Y , Y ) -  = -F3(z,Y,Y), 

where PI, F2 and P3 are known functions. Solutions of this equation have the 
following property. 

If y is given at a single point: y(xo,yo) = yo, say; then equation (3.7) defines 
y uniquely along a curve through (xo, yo), the characteristic curve, which depends 
on Yo. 

This result is proved by Courant & Hilbert (1937, pp. 51-4) and appears 
reasonable from the form of (3.8). For at (xo, yo) the values of Fl, F, and F3 are 
known; thus (3.8) states that the rate of change of y in a certain known direction is 
known. On proceeding an infinitesimal distance in this direction one finds new 
values of x, y and y, and the result follows when this process is repeated in- 
definitely. It is noteworthy that the characteristic direction is along the resultant 
of the group velocity, taken normal to the phase curve, and of the velocity of the 
basic flow. 

So far the theory has been developed in terms of the inclination y(x, y). This is 
not necessarily the most convenient dependent variable. Similar equations can 
be derived for the variation of k(z, y) along a characteristic, and thence for the 
variation of any function of x, y, y and k. In  particular, the following equations 
can be obtained 

a a 
ax a Y  

{ U(z ,  y) - cJk, h) sin y} -- (k cos y) + { V(x, y) + cg(k, h) cosy} -- (k cos y) 

(3.9) 

acp ah ) aii ax’ 
+k-- (3.10) 

22-2 
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a { U(X, y) - cJk, h) sin y }  - (kx cosy +Icy sin y) ax 

-k% ( x g - y g )  +k(Ucosy+ Vsiny). (3.11) 

In  these equations the point x = y = 0 is an arbitrary origin of co-ordinates, not 
necessarily coincident with the point disturbance. Let us consider the most 
important special case when U = constant; V = 0; and h = constant, previously 
treated in $2.  Then the right-hand side of (3.7) vanishes, and so y is constant 
along a characteristic. Similarly k is constant along a characteristic, and it follows 
that Fl and Fz are also constant along a characteristic. Thus for a uniform basic 
flow the characteristics are all straight lines, but their position in the field of flow 
is still unknown. 

We have seen that a complete characteristic curve can be constructed if y is 
known at one point on it, but we have not yet seen how such initial values of y are 
to be assigned, nor has the location of the point disturbance entered into the 
calculation. For these reasons the characteristic rays are not yet completely 
determined. We now introduce the following : 

Assumption A .  The characteristic curves of equatiolz (3.8) all pass through the 
disturbance. 

This assumption is certainly valid for uniform basic flows. This follows at once 
from the theory of $ 2 where it was shown that y is constant along straight lines 
through the disturbance. Alternatively, we may consider points on the streamline 
through the disturbance; on these, by symmetry, y is either 0 or 47~. If charac- 
teristics pass through such points, y is 0 or &T in a region (from equations (3.9) and 
(3.10)). If this conclusion is rejected as absurd, it again follows that for uniform 
basic flows the characteristics all pass through disturbance. (Near the disturbance 
the validity of (3.1) and (3.2) is in any case dubious.) Assumption A is extended to 
non-uniform basic flows by analogy. 

It is now easily seen how the characteristic curves can be constructed. To each 
arbitrary initial value of y at the disturbance there corresponds a characteristic 
of (3.7) through the disturbance. Thus y is defined uniquely on each characteristic, 
and to each point of that part of the (2, y) plane covered by characteristics there 
corresponds a value of y (or possibly several values of y).  

It is now seen how the phase curves (such as the crests) can be constructed. 
For y(x, y) which has just been obtained is the angle between the x-axis and the 
tangent to a phase curve. Thus the phase curves are the solutions of 

2 = tan y(x, y) 
dX 

which may be integrated by known methods. Thus the construction of the phase 
curves is now completed in principle. 
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In  this way one can obtain by a different method the rules for a uniform basic 
flow which were stated and explained in 4 2. As in 5 2,  suppose that the origin of 
co-ordinates is taken at the point disturbance, that h = const., that U = const., 
and ‘CT = 0, and that x = rcose and y = rsin8. Then we have seen that the 
characteristics are straight lines through the origin, on which y is constant. Thus, 
from the characteristic 0 = const. 

where cp(k) = Usiny 

and cJk) = cp(k)+k-p ac = Usiny+k-. acP 
ak ak 

Thus, by straightforward substitution 
8% 

tane-  tan y - cg ..--___ - U sin y - kz %J - -__ = - 
l + t a n e t a n y   cosy  cosy ‘ 2 ~  tan(0-y) = 

= tanS(k), 

where 6(k) is defined by (2 .2 ) .  Thus B(k) = y(k) +6(k), as in (2.3), and so 6(k), as 
appears from figure 1, is the angle between the radius and the tangent. It follows 

r -  = - tan6(k), 
that d e  

dr 

whence 
1 dr 1 ae _ _  = = -__ 
r d k  tan6dk 

1 1 d6 
k tan6dk‘ 

= 

By integration, In r = -Ink - In sin 6(k) + const., 

which agrees with the radial equation (2.3). Thus the procedure of the present 
section reduces to the rules of 5 2 for the special case of a uniform basic flow. 

Next let us briefly consider flows with radial symmetry, such as the expanding 
sheet studied by Sir Geoffrey Taylor (1959, p. 309). Let another system of polar 
co-ordinates (R, 0) relative to the centre of symmetry be introduced. Then the 
velocity components of this type of basic flow are of the form U = C(R)  cos 0, 
V = C(R) sin 0, and the depth is of the form h = h(R). If by definition 

X = Rcos0, Y = RsinO, 

then 

It is easy to see that the right-hand side of (3.11) vanishes since 

av _ -  --v, -=  u, au 
a 0  a0 

and therefore kXcos y + k Y  sin y = kRcos (0 - y )  (3.12) 

is constant along characteristics in flows with radial symmetry. The physical 
meaning of this invariant is not obvious. 
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4. Applications 
We consider symmetrical capillary waves in a thin two-sided sheet. Sir 

Geoffrey Taylor (1959, equation 114)  has shown that in a sheet of uniform 
thickness 2h 

cp(k) = ((T/p) k tanh kh}* - (Th/p)*k & ~ i  kh-tO. 

Now kh is small when 8 is small (behind the disturbance) see (4 .3)  below. In  this 
region the error will therefore be small, while the equations for the wave pattern 
will simplify considerably if the approximate relation 

cp(k) = (Th /PPk  (4.1) 

is taken to be exact, as will be done in the calculations that follow. (Compare 
Taylor 1969, equation I 1  24.) 

Let us suppose first that the basic flow is uniform and that U is constant. _ -  

sin y = (T/pU2h)* kh = Wtkh ,  
From (2.1) 

where W < 1 is the Weber number of the flow. From (2 .2) ,  

tan 6 = tan y ,  whence 6 = y ,  and sin 6 = sin y = W*kh. 

A 
=- A 

From (2 .3)  r (k)  = k sin S(k) ~ 4 , p h  

and e (k )  = y(k) + ~ F C )  = 2y(k) .  
Thus 

By elimination of k from (4 .2)  and (4 .3)  i t  is found that 

sin 48 = sin y = Wtkh .  

W- t ( r /h )  sin2 48 = A ,  

W-4(rO2/4h) = A .  

a set of parabolas; if only the leading term for small 0 is retained, this is 

A photograph of the wave pattern is shown by Taylor, Figure I 1  14. Equation (4.4) 
is identical with equation I1 32. In fact the approximation cannot consistently be 
carried beyond (4.5) if the phase velocity is taken in the approximate form (4.1).  
The exact velocity relation may be used with little trouble to give higher cor- 
rections when 8 is small, but this will not be done here. 

Let us suppose next that there is radial symmetry; that the radial velocity is 
constant, C(R)  = C,, say (cf. the end of 4 3 ) ;  and that the depth h varies as R-I. 

These conditions are satisfied by an expanding sheet, (see 11, p. 299). If it is still 
assumed that 

exactly, then the wave pattern can be found in explicit form, as will now be shown. 
The characteristic rays are first found. Let $ denote the angle between the 

characteristic through (R, 0) and the radius 0 = 0. Then, from the equation for - - 
the characteristic, 

C,sin 0 + c,(k, h) __~  cosy 
C,, cos 0 - c,( k ,  h)  sin y ’ 

t an$=  - 
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whence 
cu cos (y  - 0)  

Co - cg sin (y - 0)  ’ 
tan($-0) = (4-7) 

Also cu = c,+k(ac,/ak) = 2cp, from (4.1); (4.8) 

c,(k) = Cosin(y-O), from (3.1). (4.9) 

(it is the simplicity of this relation which simplifies the calculation) and 

Thus 

whence 

2 sin (y - 0)  cos (y - 0)  
1 - 2 sina (y  - 0)  tan($-@) = 

= tan 2(y-0), 

$ = 2y-0. 
(4.10) 

(4.11) 

Moreover, from (3.12), kRcos (y  - 0)  is constant along a Characteristic, and from 
(4.9), since h varies as R-l, R4k-l sin (y - 0)  is constant everywhere. On multi- 
plying these, we find that R* sin 2(y - 0)  is constant along a characteristic. If the 
point disturbance is situated at (Ro, 0) and if yo is the initial value y on a 
characteristic, Ri) sin 2(y - 0)  = Rt sin 27,. 

By elementary differential geometry on a characteristic, 

d 0  
dR 

R- =tan($-@) 

= tan2(y-0) from (4.10), 

3 ‘sin 2y0(l - (Ro/R)3sin2 2yo}-f from (4.12). 
= (R) 

12 &!’ 5 ‘sin 2y0{1 - (Ro/R)3sin2 2y0}-* 
Thus = lR0 R ( R )  

= - ss,” p w sin 2y0( 1 - v2 sina 2y0)-b, where v = (Ro/R)a 

= - 3 sin-1 (w sin 27,) ++yo, 

and the equation of the characteristic rays is thus 

sin (27, - $0) = w sin 27, = 2 ‘sin 2y0, 0 
where yo is the initial value of y at the disturbance (Bo, 0). From (4.13), 

(4.12) 

(4.13) 

(4.14) 

tan2(y-0) = sin(2yo-$@){1 -sin2(2yo-s0)}-f = tan(2yo-$QO), 

whence 7-0  = y 0 -@). (4.15) 

It is now possible to find the slope of the phase curve through any point (R, 0). 
First the parameter yo of the ray through (R, 0)  is found from (4.14), then the 
slope y is found from (4.15). 

The differential equation of the crests is 

d 0  
dR 

R -- = tan (y - 0)  

= tan (yo - 20) (4.16) 
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from (4.15), where yo(R, 0)  is the function defined implicitly by (4.14) 

sin 40 
COS #@ - V ’  

= -~ sin $0 
cos #@ - (R,/R)* 

tan.27, = (4.17) 

It is easy to show that 
v sin $0 

tan (27 ,  - $0) = 
l -vcos#0  

- - 2R(d0’dR) from (4.16). 
1 - R2(d0/dR)2 

This is a quadratic equation for R(d@/dR); the required root is 

R- = -3vu- = ~ 1 - v c o s # 0  1-2vcos@+v2 
(4.18) 

This root tends to zero as v tends to zero, compare (4.16) and (4.17). If now cos #0 
is chosen as a new variable instead of 0, it is possible to integrate (4.18). The 

-+( v2 sin2 $0 
d 0  a0 
dR ’ dv v sin $@ 

solution is 

as may be verified by differentiation. 
The phase curves are therefore 

R *  R S  (g)  - ( ($J -Z (~ )  c o s ~ ~ + ~  (4.19) 

where (R, 0) are polar co-ordinates relative to the centre of the basic streaming 
flow, and the centre of disturbance is at (R, 0). To determine which phase curves 
are crests it is necessary to find the actual phase, such that the distance between 
successive crests is equal to the local wavelength as given by (4.1). The phase 
might possibly be a complicated function of the left-hand side of (4.19). It is 
easily found by taking R large on the phase curves (which are almost straight at  
infinity) and comparing with (4.1). It appears that the phase e is in fact a linear 

~ 

function 

(4.20) 
E=~[((g)3-~(q) R S  cosQO+l 

where 

is the volume flux, and e has been made to vanish when 0 = 0 and R > R,. It is 
clearly legitimate for the purpose of this argument to allow R to tend to infinity, 
although in fact an instability associated with a different type of wave causes the 
thin a m  to break at a finite radius. It is easy to see that 

(4.21) 

where 4 is the radius at which W = (T/pC&) = 1, and 2h, is the thickness there. 
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To obtain an approximation for the phase curves downstream when the phase 
E is small, we have from (4.20) that 

exactly where v = (Ro/R)+ < 1. The left-hand side for small 8 is 

(1 - cos go)/(i - v) + o(v04) 
= # 0 2 / (  1 - v) 

S E  
O2 = - (1 -v) 

9B 
approximately. Thus 

(4.22) 

is the approximate polar equation of the curve of phase E ,  where R is the distance 
from the centre of the basic flow, Rl is the outer radius where W = 1, Ro is the 
distance of the disturbance from the centre of the basic flow, and 2h, is the thick- 
ness of the film at distance R,. Equation (4.22) agrees with Taylor’s result (I1 42) 
which is illustrated in figures I1 16 and 17 of his paper, though in the present 
calculation it is not assumed that the crests pass near the disturbance. Instead it 
has been assumed that the characteristic rays pass through the disturbance, and 
this is sufficient to  fix the position of the phase curves. There is no difficulty in 
principle in carrying out a similar calculation for the exact phase-velocity 
relation, but a method of successive approximation is then needed near 0 = 0. 

5. Discussion and conclusions 
It was assumed at the beginning of 5 3 that the velocity component normal to 

z = 0 vanishes on z = 0, but it will be clear that this assumption was not fully 
used. All that is needed is the phase-velocity c,(k,h) as a function of wave- 
number k, with the local depth h entering as a parameter. (Taylor’s ‘anti- 
symmetric ’ waves, equation I1 9, are an example of this.) And if it  is some para- 
meter other than depth which changes slowly from point to point then the theory 
is unchanged, provided that the phase velocity can still be found as a function of 
k and of the new parameter. Nor is it necessary that the disturbance should be 
caused by a point pressure rather than by some other concentrated physical 
agency. 

The theory of 5 3 is based on physically plausible assumptions, but no rigorous 
attempt hm yet been made to find sufficient conditions for its validity. It would 
be helpful if explicit solutions could be found for some non-uniform basic flows, 
perhaps with axial symmetry. A comparison with the approximate theory would 
then become possible. It would also be helpful if the present theory could be 
made to appear as the first stage in a well-defined scheme of successive approxima- 
tion, so that the errors could be estimated. 
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